Micro Electro Mechanical System Design by James J. Allen

By James J. Allen

It really is hard at most sensible to discover a source that gives the breadth of data essential to increase a profitable micro electro mechanical procedure (MEMS) layout. Micro Electro Mechanical process layout is that source. it's a finished, single-source advisor that explains the layout technique through illustrating the whole variety of matters concerned, how they're interrelated, and the way they are often quick and thoroughly addressed.
The fabrics are offered in logical order relative to the style a MEMS clothier must observe them. for instance, to ensure that a undertaking to be accomplished accurately, on time, and inside funds, the next varied but correlated matters needs to be attended to in the course of the preliminary phases of layout and development:
Understanding the fabrication applied sciences which are available
Recognizing the suitable physics concerned for micron scale devices
Considering implementation matters appropriate to computing device aided design
Focusing at the engineering information and the next review testing
Maintaining an eye fixed for element relating to either reliability and packaging
These matters are absolutely addressed during this e-book, besides questions and difficulties on the finish of every bankruptcy that advertise assessment and additional contemplation of every subject. additionally, the appendices provide details that supplement every one degree of undertaking layout and improvement.

Show description

Read or Download Micro Electro Mechanical System Design PDF

Best microelectronics books

Werkstoffe fur die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften

Die vierte Auflage dieses bewährten Lehrbuches bietet eine moderne Einführung in die Grundlagen der Werkstoffwissenschaften. Das Buch stellt in zwei Teilen den Aufbau der Stoffe sowie die Werkstoffeigenschaften dar. Mechanische und thermische Werkstoffeigenschaften, elektrische Eigenschaften der Halbleiter, der Metalle und der Isolatoren sowie magnetische Werkstoffeigenschaften werden ausführlich behandelt.

Microelectronics Technology. Polymers for Advanced Imaging and Packaging

Content material: An research of technique concerns with chemically amplified confident resists / O. Nalamasu, A. G. Timko, Elsa Reichmanis, F. M. Houlihan, Anthony E. Novembre, R. Tarascon, N. Münzel, and S. G. Slater -- The annealing inspiration for environmental stabilization of chemical amplification resists / Hiroshi Ito, Greg Breyta, Donald C.

Networks-on-Chips: Theory and Practice

The implementation of networks-on-chip (NoC) know-how in VLSI integration offers quite a few distinct demanding situations. to house particular layout recommendations and examine hurdles concerning intra-chip information trade, engineers are challenged to invoke a variety of disciplines and specializations whereas holding a targeted strategy.

Electronic circuit analysis and design

Half I Semiconductor units and simple purposes 1 --
Chapter 1 Semiconductor fabrics and Diodes three --
1. 1 Semiconductor fabrics and houses four --
1. 1. 1 Intrinsic Semiconductors four --
1. 1. 2 Extrinsic Semiconductors 7 --
1. 1. three float and Diffusion Currents nine --
1. 1. four extra companies eleven --
1. 2 The pn Junction 12 --
1. 2. 1 The Equilibrium pn Junction 12 --
1. 2. 2 Reverse-Biased pn Junction 14 --
1. 2. three Forward-Biased pn Junction sixteen --
1. 2. four excellent Current-Voltage dating 17 --
1. 2. five pn Junction Diode 18 --
1. three Diode Circuits: DC research and versions 23 --
1. three. 1 new release and Graphical research innovations 24 --
1. three. 2 Piecewise Linear version 27 --
1. three. three machine Simulation and research 30 --
1. three. four precis of Diode versions 31 --
1. four Diode Circuits: AC an identical Circuit 31 --
1. four. 1 Sinusoidal research 31 --
1. four. 2 Small-Signal an identical Circuit 35 --
1. five different Diode forms 35 --
1. five. 1 sunlight mobilephone 35 --
1. five. 2 Photodiode 36 --
1. five. three Light-Emitting Diode 36 --
1. five. four Schottky Barrier Diode 37 --
1. five. five Zener Diode 39 --
Chapter 2 Diode Circuits forty nine --
2. 1 Rectifier Circuits 50 --
2. 1. 1 Half-Wave Rectification 50 --
Problem-Solving procedure: Diode Circuits fifty one --
2. 1. 2 Full-Wave Rectification fifty three --
2. 1. three Filters, Ripple Voltage, and Diode present fifty six --
2. 1. four Voltage Doubler Circuit sixty three --
2. 2 Zener Diode Circuits sixty four --
2. 2. 1 perfect Voltage Reference Circuit sixty four --
2. 2. 2 Zener Resistance and percentage law sixty seven --
2. three Clipper and Clamper Circuits sixty eight --
2. three. 1 Clippers sixty eight --
2. three. 2 Clampers seventy two --
2. four Multiple-Diode Circuits seventy five --
2. four. 1 instance Diode Circuits seventy five --
Problem-Solving approach: a number of Diode Circuits seventy nine --
2. four. 2 Diode common sense Circuits eighty --
2. five Photodiode and LED Circuits eighty two --
2. five. 1 Photodiode Circuit eighty two --
2. five. 2 LED Circuit eighty three --
Chapter three The Bipolar Junction Transistor ninety seven --
3. 1 easy Bipolar Junction Transistor ninety seven --
3. 1. 1 Transistor constructions ninety eight --
3. 1. 2 npn Transistor: Forward-Active Mode Operation ninety nine --
3. 1. three pnp Transistor: Forward-Active Mode Operation 104 --
3. 1. four Circuit Symbols and Conventions a hundred and five --
3. 1. five Current-Voltage features 107 --
3. 1. 6 Nonideal Transistor Leakage Currents and Breakdown Voltage one hundred ten --
3. 2 DC research of Transistor Circuits 113 --
3. 2. 1 Common-Emitter Circuit 114 --
3. 2. 2 Load Line and Modes of Operation 117 --
Problem-Solving strategy: Bipolar DC research one hundred twenty --
3. 2. three universal Bipolar Circuits: DC research 121 --
3. three easy Transistor functions 131 --
3. three. 1 swap 131 --
3. three. 2 electronic common sense 133 --
3. three. three Amplifier 134 --
3. four Bipolar Transistor Biasing 138 --
3. four. 1 unmarried Base Resistor Biasing 138 --
3. four. 2 Voltage Divider Biasing and Bias balance a hundred and forty --
3. four. three built-in Circuit Biasing a hundred forty five --
3. five Multistage Circuits 147 --
Chapter four easy BJT Amplifiers 163 --
4. 1 Analog indications and Linear Amplifiers 163 --
4. 2 The Bipolar Linear Amplifier a hundred sixty five --
4. 2. 1 Graphical research and AC similar Circuit 166 --
4. 2. 2 Small-Signal Hybrid-[pi] an identical Circuit of the Bipolar Transistor a hundred and seventy --
Problem-Solving strategy: Bipolar AC research one hundred seventy five --
4. 2. three Hybrid-[pi] similar Circuit, together with the Early influence 176 --
4. 2. four improved Hybrid-[pi] identical Circuit one hundred eighty --
4. 2. five different Small-Signal Parameters and similar Circuits one hundred eighty --
4. three uncomplicated Transistor Amplifier Configurations 185 --
4. four Common-Emitter Amplifiers 189 --
4. four. 1 simple Common-Emitter Amplifier Circuit a hundred ninety --
4. four. 2 Circuit with Emitter Resistor 192 --
4. four. three Circuit with Emitter-Bypass Capacitor 196 --
4. four. four complicated Common-Emitter Amplifier suggestions 199 --
4. five AC Load Line research 2 hundred --
4. five. 1 AC Load Line 2 hundred --
4. five. 2 greatest Symmetrical Swing 203 --
Problem-Solving strategy: greatest Symmetrical Swing 204 --
4. 6 Common-Collector (Emitter-Follower) Amplifier 205 --
4. 6. 1 Small-Signal Voltage achieve 205 --
4. 6. 2 enter and Output Impedance 207 --
4. 6. three Small-Signal present achieve 209 --
4. 7 Common-Base Amplifier 214 --
4. 7. 1 Small-Signal Voltage and present profits 214 --
4. 7. 2 enter and Output Impedance 216 --
4. eight the 3 uncomplicated Amplifiers: precis and comparability 218 --
4. nine Multistage Amplifiers 219 --
4. nine. 1 Multistage research: Cascade Configuration 219 --
4. nine. 2 Cascode Configuration 223 --
4. 10 energy issues 226 --
Chapter five The Field-Effect Transistor 243 --
5. 1 MOS Field-Effect Transistor 243 --
5. 1. 1 Two-Terminal MOS constitution 244 --
5. 1. 2 n-Channel Enhancement-Mode MOSFET 246 --
5. 1. three perfect MOSFET Current-Voltage features 248 --
5. 1. four Circuit Symbols and Conventions 253 --
5. 1. five extra MOSFET constructions and Circuit Symbols 253 --
5. 1. 6 precis of Transistor Operation 258 --
5. 1. 7 Nonideal Current-Voltage features 259 --
5. 2 MOSFET DC Circuit research 262 --
5. 2. 1 Common-Source Circuit 263 --
5. 2. 2 Load Line and Modes of Operation 267 --
Problem-Solving approach: MOSFET DC research 268 --
5. 2. three universal MOSFET Configurations: DC research 269 --
5. 2. four Constant-Current resource Biasing 281 --
5. three simple MOSFET functions: change, electronic good judgment Gate, and Amplifier 283 --
5. three. 1 NMOS Inverter 283 --
5. three. 2 electronic common sense Gate 285 --
5. three. three MOSFET Small-Signal Amplifier 287 --
5. four Junction Field-Effect Transistor 287 --
5. four. 1 pn JFET and MESFET Operation 288 --
5. four. 2 Current-Voltage features 292 --
5. four. three universal JFET Configurations: DC research 295 --
Chapter 6 easy FET Amplifiers 313 --
6. 1 The MOSFET Amplifier 313 --
6. 1. 1 Graphical research, Load strains, and Small-Signal Parameters 314 --
6. 1. 2 Small-Signal identical Circuit 318 --
Problem-Solving method: MOSFET AC research 320 --
6. 1. three Modeling the physique impression 322 --
6. 2 simple Transistor Amplifier Configurations 323 --
6. three The Common-Source Amplifier 324 --
6. three. 1 A simple Common-Source Configuration 324 --
6. three. 2 Common-Source Amplifier with resource Resistor 329 --
6. three. three Common-Source Circuit with resource pass Capacitor 331 --
6. four The Source-Follower Amplifier 334 --
6. four. 1 Small-Signal Voltage achieve 334 --
6. four. 2 enter and Output Impedance 339 --
6. five The Common-Gate Configuration 341 --
6. five. 1 Small-Signal Voltage and present profits 341 --
6. five. 2 enter and Output Impedance 343 --
6. 6 the 3 uncomplicated Amplifier Configurations: precis and comparability 345 --
6. 7 Single-Stage built-in Circuit MOSFET Amplifiers 345 --
6. 7. 1 NMOS Amplifier with Enhancement Load 345 --
6. 7. 2 NMOS Amplifier with Depletion Load 350 --
6. 7. three NMOS Amplifier with PMOS Load 353 --
6. eight Multistage Amplifiers 355 --
6. eight. 1 DC research 356 --
6. eight. 2 Small-Signal research 360 --
6. nine easy JFET Amplifiers 362 --
6. nine. 1 Small-Signal similar Circuit 362 --
6. nine. 2 Small-Signal research 364 --
Chapter 7 Frequency reaction 383 --
7. 1 Amplifier Frequency reaction 384 --
7. 1. 1 similar Circuits 384 --
7. 1. 2 Frequency reaction research 385 --
7. 2 procedure move capabilities 386 --
7. 2. 1 s-Domain research 386 --
7. 2. 2 First-Order capabilities 388 --
7. 2. three Bode Plots 388 --
7. 2. four Short-Circuit and Open-Circuit Time Constants 394 --
7. three Frequency reaction: Transistor Amplifiers with Circuit Capacitors 398 --
7. three. 1 Coupling Capacitor results 398 --
Problem-Solving strategy: Bode Plot of achieve value 404 --
7. three. 2 Load Capacitor results 405 --
7. three. three Coupling and cargo Capacitors 407 --
7. three. four skip Capacitor results 410 --
7. three. five mixed results: Coupling and skip Capacitors 414 --
7. four Frequency reaction: Bipolar Transistor 416 --
7. four. 1 improved Hybrid-[pi] identical Circuit 416 --
7. four. 2 Short-Circuit present achieve 418 --
7. four. three Cutoff Frequency 420 --
7. four. four Miller influence and Miller Capacitance 422 --
7. five Frequency reaction: The FET 426 --
7. five. 1 High-Frequency identical Circuit 426 --
7. five. 2 Unity-Gain Bandwidth 428 --
7. five. three Miller impact and Miller Capacitance 431 --
7. 6 High-Frequency reaction of Transistor Circuits 433 --
7. 6. 1 Common-Emitter and Common-Source Circuits 433 --
7. 6. 2 Common-Base, Common-Gate, and Cascode Circuits 436 --
7. 6. three Emitter- and Source-Follower Circuits 444 --
7. 6. four High-Frequency Amplifier layout 448 --
Chapter eight Output levels and gear Amplifiers 469 --
8. 1 strength Amplifiers 469 --
8. 2 strength Transistors 470 --
8. 2. 1 energy BJTs 470 --
8. 2. 2 strength MOSFETs 474 --
8. 2. three warmth Sinks 477 --
8. three periods of Amplifiers 480 --
8. three. 1 Class-A Operation 481 --
8. three. 2 Class-B Operation 484 --
8. three. three Class-AB Operation 489 --
8. three. four Class-C Operation 493 --
8. four Class-A strength Amplifiers 494 --
8. four. 1 Inductively Coupled Amplifier 494 --
8. four. 2 Transformer-Coupled Common-Emitter Amplifier 495 --
8. four. three Transformer-Coupled Emitter-Follower Amplifier 497 --
8. five Class-AB Push-Pull Complementary Output levels 499 --
8. five. 1 Class-AB Output degree with Diode Biasing 499 --
8. five. 2 Class-AB Biasing utilizing the V[subscript BE] Multiplier 501 --
8. five. three Class-AB Output degree with enter Buffer Transistors 504 --
8. five. four Class-AB Output degree using the Darlington Configuration 507 --
Part II Analog Electronics 519 --
Chapter nine the best Operational Amplifier 521 --
9. 1 The Operational Amplifier 521 --
9. 1. 1 perfect Parameters 522 --
9. 1. 2 improvement of the fitting Parameters 523 --
9. 1. three research approach 525 --
9. 1. four PSpice Modeling 526 --
9. 2 Inverting Amplifier 526 --
9. 2. 1 easy Amplifier 527 --
Problem-Solving strategy: excellent Op-Amp Circuits 529 --
9. 2. 2 Amplifier with a T-Network 530 --
9. 2. three influence of Finite achieve 532 --
9. three Summing Amplifier 534 --
9. four Noninverting Amplifier 536 --
9. four. 1 uncomplicated Amplifier 536 --
9. four. 2 Voltage Follower 537

Additional resources for Micro Electro Mechanical System Design

Sample text

74 — a Assuming only one atom type in the lattice. 4 The diamond cubic lattice can be formed by adding four atoms (shaded dark) to the face-centered cubic lattice. , lattice constant) will greatly influence the density of the material. , aluminum, cooper, gold, nickel), which contain more atoms per unit cell instead of the simple cubic crystal, which contains only one atom per unit cell. Silicon and germanium are Group IV elements on the periodic table; these have four valence electrons and need four more electrons to complete the outer electron shell.

T. Howe, Laterally driven polysilicon resonant microstructures, Sensors Actuators, 20(1–2), 25–32, November 1989. 25. J. W. R. S. Fearing, Microfabricated hinges, Sensors Actuators A, 33, 249–256, 1992. 26. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muchmeyer, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process), Microelectron. , 4, 35, 1986. 27. com/. 28. com/. 29. D.

6 PATTERNING The ability to pattern deposited layers is an essential capability required in microelectronics and MEMS processing. Three widely utilized methods of patterning will be discussed: lithography, the lift-off process, and the damascene process. Lithography is the mainstream process utilized for patterning in MEMS processes. Lift-off and damascene are processes used for patterning materials in which a reliable etch process such as metallization layers or optical coating layers does not exist.

Download PDF sample

Rated 4.88 of 5 – based on 11 votes