Advances in Photovoltaics: Part 3, by Gerhard P. Willeke, Eicke R. Weber

By Gerhard P. Willeke, Eicke R. Weber

This quantity is the 3rd of a suite of 7 regarding photovoltaics. sun cell-related applied sciences coated the following contain: ribbon silicon; heterojunction crystalline silicon; wafer an identical crystalline silicon; and different complex silicon sun mobile buildings and processes.

Semiconductors and Semimetals has extraordinary itself during the cautious number of famous authors, editors, and individuals. initially well known because the "Willardson and Beer" sequence, it has succeeded in publishing a number of landmark volumes and chapters. The sequence publishes well timed, hugely correct volumes meant for long term impression and reflecting the really interdisciplinary nature of the sector. The volumes in Semiconductors and Semimetals were and should stay of serious curiosity to physicists, chemists, fabrics scientists, and gadget engineers in academia, clinical laboratories and sleek industry.

  • Written and edited by way of the world over popular experts
  • Relevant to a large readership: physicists, chemists, fabrics scientists, and equipment engineers in academia, medical laboratories and smooth industry

Show description

Read Online or Download Advances in Photovoltaics: Part 3, PDF

Best microelectronics books

Werkstoffe fur die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften

Die vierte Auflage dieses bewährten Lehrbuches bietet eine moderne Einführung in die Grundlagen der Werkstoffwissenschaften. Das Buch stellt in zwei Teilen den Aufbau der Stoffe sowie die Werkstoffeigenschaften dar. Mechanische und thermische Werkstoffeigenschaften, elektrische Eigenschaften der Halbleiter, der Metalle und der Isolatoren sowie magnetische Werkstoffeigenschaften werden ausführlich behandelt.

Microelectronics Technology. Polymers for Advanced Imaging and Packaging

Content material: An research of approach concerns with chemically amplified confident resists / O. Nalamasu, A. G. Timko, Elsa Reichmanis, F. M. Houlihan, Anthony E. Novembre, R. Tarascon, N. Münzel, and S. G. Slater -- The annealing idea for environmental stabilization of chemical amplification resists / Hiroshi Ito, Greg Breyta, Donald C.

Networks-on-Chips: Theory and Practice

The implementation of networks-on-chip (NoC) know-how in VLSI integration provides numerous precise demanding situations. to accommodate particular layout strategies and study hurdles relating to intra-chip information trade, engineers are challenged to invoke quite a lot of disciplines and specializations whereas conserving a centred process.

Electronic circuit analysis and design

Half I Semiconductor units and easy functions 1 --
Chapter 1 Semiconductor fabrics and Diodes three --
1. 1 Semiconductor fabrics and homes four --
1. 1. 1 Intrinsic Semiconductors four --
1. 1. 2 Extrinsic Semiconductors 7 --
1. 1. three glide and Diffusion Currents nine --
1. 1. four extra providers eleven --
1. 2 The pn Junction 12 --
1. 2. 1 The Equilibrium pn Junction 12 --
1. 2. 2 Reverse-Biased pn Junction 14 --
1. 2. three Forward-Biased pn Junction sixteen --
1. 2. four perfect Current-Voltage dating 17 --
1. 2. five pn Junction Diode 18 --
1. three Diode Circuits: DC research and types 23 --
1. three. 1 new release and Graphical research options 24 --
1. three. 2 Piecewise Linear version 27 --
1. three. three machine Simulation and research 30 --
1. three. four precis of Diode versions 31 --
1. four Diode Circuits: AC identical Circuit 31 --
1. four. 1 Sinusoidal research 31 --
1. four. 2 Small-Signal an identical Circuit 35 --
1. five different Diode forms 35 --
1. five. 1 sun cellphone 35 --
1. five. 2 Photodiode 36 --
1. five. three Light-Emitting Diode 36 --
1. five. four Schottky Barrier Diode 37 --
1. five. five Zener Diode 39 --
Chapter 2 Diode Circuits forty nine --
2. 1 Rectifier Circuits 50 --
2. 1. 1 Half-Wave Rectification 50 --
Problem-Solving method: Diode Circuits fifty one --
2. 1. 2 Full-Wave Rectification fifty three --
2. 1. three Filters, Ripple Voltage, and Diode present fifty six --
2. 1. four Voltage Doubler Circuit sixty three --
2. 2 Zener Diode Circuits sixty four --
2. 2. 1 excellent Voltage Reference Circuit sixty four --
2. 2. 2 Zener Resistance and percentage legislation sixty seven --
2. three Clipper and Clamper Circuits sixty eight --
2. three. 1 Clippers sixty eight --
2. three. 2 Clampers seventy two --
2. four Multiple-Diode Circuits seventy five --
2. four. 1 instance Diode Circuits seventy five --
Problem-Solving process: a number of Diode Circuits seventy nine --
2. four. 2 Diode good judgment Circuits eighty --
2. five Photodiode and LED Circuits eighty two --
2. five. 1 Photodiode Circuit eighty two --
2. five. 2 LED Circuit eighty three --
Chapter three The Bipolar Junction Transistor ninety seven --
3. 1 easy Bipolar Junction Transistor ninety seven --
3. 1. 1 Transistor buildings ninety eight --
3. 1. 2 npn Transistor: Forward-Active Mode Operation ninety nine --
3. 1. three pnp Transistor: Forward-Active Mode Operation 104 --
3. 1. four Circuit Symbols and Conventions one hundred and five --
3. 1. five Current-Voltage features 107 --
3. 1. 6 Nonideal Transistor Leakage Currents and Breakdown Voltage one hundred ten --
3. 2 DC research of Transistor Circuits 113 --
3. 2. 1 Common-Emitter Circuit 114 --
3. 2. 2 Load Line and Modes of Operation 117 --
Problem-Solving procedure: Bipolar DC research a hundred and twenty --
3. 2. three universal Bipolar Circuits: DC research 121 --
3. three uncomplicated Transistor functions 131 --
3. three. 1 swap 131 --
3. three. 2 electronic good judgment 133 --
3. three. three Amplifier 134 --
3. four Bipolar Transistor Biasing 138 --
3. four. 1 unmarried Base Resistor Biasing 138 --
3. four. 2 Voltage Divider Biasing and Bias balance one hundred forty --
3. four. three built-in Circuit Biasing one hundred forty five --
3. five Multistage Circuits 147 --
Chapter four easy BJT Amplifiers 163 --
4. 1 Analog signs and Linear Amplifiers 163 --
4. 2 The Bipolar Linear Amplifier one hundred sixty five --
4. 2. 1 Graphical research and AC an identical Circuit 166 --
4. 2. 2 Small-Signal Hybrid-[pi] similar Circuit of the Bipolar Transistor one hundred seventy --
Problem-Solving approach: Bipolar AC research a hundred seventy five --
4. 2. three Hybrid-[pi] similar Circuit, together with the Early influence 176 --
4. 2. four multiplied Hybrid-[pi] an identical Circuit one hundred eighty --
4. 2. five different Small-Signal Parameters and identical Circuits a hundred and eighty --
4. three easy Transistor Amplifier Configurations 185 --
4. four Common-Emitter Amplifiers 189 --
4. four. 1 simple Common-Emitter Amplifier Circuit a hundred ninety --
4. four. 2 Circuit with Emitter Resistor 192 --
4. four. three Circuit with Emitter-Bypass Capacitor 196 --
4. four. four complicated Common-Emitter Amplifier options 199 --
4. five AC Load Line research two hundred --
4. five. 1 AC Load Line 2 hundred --
4. five. 2 greatest Symmetrical Swing 203 --
Problem-Solving method: greatest Symmetrical Swing 204 --
4. 6 Common-Collector (Emitter-Follower) Amplifier 205 --
4. 6. 1 Small-Signal Voltage achieve 205 --
4. 6. 2 enter and Output Impedance 207 --
4. 6. three Small-Signal present achieve 209 --
4. 7 Common-Base Amplifier 214 --
4. 7. 1 Small-Signal Voltage and present earnings 214 --
4. 7. 2 enter and Output Impedance 216 --
4. eight the 3 easy Amplifiers: precis and comparability 218 --
4. nine Multistage Amplifiers 219 --
4. nine. 1 Multistage research: Cascade Configuration 219 --
4. nine. 2 Cascode Configuration 223 --
4. 10 energy issues 226 --
Chapter five The Field-Effect Transistor 243 --
5. 1 MOS Field-Effect Transistor 243 --
5. 1. 1 Two-Terminal MOS constitution 244 --
5. 1. 2 n-Channel Enhancement-Mode MOSFET 246 --
5. 1. three perfect MOSFET Current-Voltage features 248 --
5. 1. four Circuit Symbols and Conventions 253 --
5. 1. five extra MOSFET buildings and Circuit Symbols 253 --
5. 1. 6 precis of Transistor Operation 258 --
5. 1. 7 Nonideal Current-Voltage features 259 --
5. 2 MOSFET DC Circuit research 262 --
5. 2. 1 Common-Source Circuit 263 --
5. 2. 2 Load Line and Modes of Operation 267 --
Problem-Solving process: MOSFET DC research 268 --
5. 2. three universal MOSFET Configurations: DC research 269 --
5. 2. four Constant-Current resource Biasing 281 --
5. three easy MOSFET purposes: change, electronic good judgment Gate, and Amplifier 283 --
5. three. 1 NMOS Inverter 283 --
5. three. 2 electronic common sense Gate 285 --
5. three. three MOSFET Small-Signal Amplifier 287 --
5. four Junction Field-Effect Transistor 287 --
5. four. 1 pn JFET and MESFET Operation 288 --
5. four. 2 Current-Voltage features 292 --
5. four. three universal JFET Configurations: DC research 295 --
Chapter 6 easy FET Amplifiers 313 --
6. 1 The MOSFET Amplifier 313 --
6. 1. 1 Graphical research, Load strains, and Small-Signal Parameters 314 --
6. 1. 2 Small-Signal similar Circuit 318 --
Problem-Solving approach: MOSFET AC research 320 --
6. 1. three Modeling the physique impact 322 --
6. 2 uncomplicated Transistor Amplifier Configurations 323 --
6. three The Common-Source Amplifier 324 --
6. three. 1 A easy Common-Source Configuration 324 --
6. three. 2 Common-Source Amplifier with resource Resistor 329 --
6. three. three Common-Source Circuit with resource skip Capacitor 331 --
6. four The Source-Follower Amplifier 334 --
6. four. 1 Small-Signal Voltage achieve 334 --
6. four. 2 enter and Output Impedance 339 --
6. five The Common-Gate Configuration 341 --
6. five. 1 Small-Signal Voltage and present profits 341 --
6. five. 2 enter and Output Impedance 343 --
6. 6 the 3 simple Amplifier Configurations: precis and comparability 345 --
6. 7 Single-Stage built-in Circuit MOSFET Amplifiers 345 --
6. 7. 1 NMOS Amplifier with Enhancement Load 345 --
6. 7. 2 NMOS Amplifier with Depletion Load 350 --
6. 7. three NMOS Amplifier with PMOS Load 353 --
6. eight Multistage Amplifiers 355 --
6. eight. 1 DC research 356 --
6. eight. 2 Small-Signal research 360 --
6. nine simple JFET Amplifiers 362 --
6. nine. 1 Small-Signal similar Circuit 362 --
6. nine. 2 Small-Signal research 364 --
Chapter 7 Frequency reaction 383 --
7. 1 Amplifier Frequency reaction 384 --
7. 1. 1 identical Circuits 384 --
7. 1. 2 Frequency reaction research 385 --
7. 2 approach move capabilities 386 --
7. 2. 1 s-Domain research 386 --
7. 2. 2 First-Order services 388 --
7. 2. three Bode Plots 388 --
7. 2. four Short-Circuit and Open-Circuit Time Constants 394 --
7. three Frequency reaction: Transistor Amplifiers with Circuit Capacitors 398 --
7. three. 1 Coupling Capacitor results 398 --
Problem-Solving method: Bode Plot of achieve significance 404 --
7. three. 2 Load Capacitor results 405 --
7. three. three Coupling and cargo Capacitors 407 --
7. three. four pass Capacitor results 410 --
7. three. five mixed results: Coupling and pass Capacitors 414 --
7. four Frequency reaction: Bipolar Transistor 416 --
7. four. 1 increased Hybrid-[pi] an identical Circuit 416 --
7. four. 2 Short-Circuit present achieve 418 --
7. four. three Cutoff Frequency 420 --
7. four. four Miller impression and Miller Capacitance 422 --
7. five Frequency reaction: The FET 426 --
7. five. 1 High-Frequency identical Circuit 426 --
7. five. 2 Unity-Gain Bandwidth 428 --
7. five. three Miller influence and Miller Capacitance 431 --
7. 6 High-Frequency reaction of Transistor Circuits 433 --
7. 6. 1 Common-Emitter and Common-Source Circuits 433 --
7. 6. 2 Common-Base, Common-Gate, and Cascode Circuits 436 --
7. 6. three Emitter- and Source-Follower Circuits 444 --
7. 6. four High-Frequency Amplifier layout 448 --
Chapter eight Output phases and gear Amplifiers 469 --
8. 1 strength Amplifiers 469 --
8. 2 strength Transistors 470 --
8. 2. 1 energy BJTs 470 --
8. 2. 2 energy MOSFETs 474 --
8. 2. three warmth Sinks 477 --
8. three sessions of Amplifiers 480 --
8. three. 1 Class-A Operation 481 --
8. three. 2 Class-B Operation 484 --
8. three. three Class-AB Operation 489 --
8. three. four Class-C Operation 493 --
8. four Class-A energy Amplifiers 494 --
8. four. 1 Inductively Coupled Amplifier 494 --
8. four. 2 Transformer-Coupled Common-Emitter Amplifier 495 --
8. four. three Transformer-Coupled Emitter-Follower Amplifier 497 --
8. five Class-AB Push-Pull Complementary Output levels 499 --
8. five. 1 Class-AB Output degree with Diode Biasing 499 --
8. five. 2 Class-AB Biasing utilizing the V[subscript BE] Multiplier 501 --
8. five. three Class-AB Output level with enter Buffer Transistors 504 --
8. five. four Class-AB Output degree using the Darlington Configuration 507 --
Part II Analog Electronics 519 --
Chapter nine the suitable Operational Amplifier 521 --
9. 1 The Operational Amplifier 521 --
9. 1. 1 excellent Parameters 522 --
9. 1. 2 improvement of the best Parameters 523 --
9. 1. three research process 525 --
9. 1. four PSpice Modeling 526 --
9. 2 Inverting Amplifier 526 --
9. 2. 1 easy Amplifier 527 --
Problem-Solving approach: perfect Op-Amp Circuits 529 --
9. 2. 2 Amplifier with a T-Network 530 --
9. 2. three influence of Finite achieve 532 --
9. three Summing Amplifier 534 --
9. four Noninverting Amplifier 536 --
9. four. 1 easy Amplifier 536 --
9. four. 2 Voltage Follower 537

Extra info for Advances in Photovoltaics: Part 3,

Example text

With Eqs. 5g spectrum) should be minimized. Apart from the ARC effect, SiNx:H is also suited for surface passivation of the n++ P-doped emitter. , 2012). 11 This surface passivation mechanism is referred to as field effect passivation in contrast to chemical passivation, where the reconstruction of chemical bonds lowers the density of energy levels in the bandgap. Chemical passivation is also present for SiNx:H layers, but remaining defect densities are usually higher than for SiO2 layers, which in turn have a lower density of fixed charges.

A screen consisting of a mesh of wires partly covered with an emulsion is the mask for the metallization process. Metal paste is printed through the openings in the emulsion through the mesh of wires onto the wafer lying under the screen. The screen is positioned on top of the wafer with a well-defined distance between screen and wafer (the snap-off distance). The paste is placed on top of the screen and a squeegee moving horizontally without pressure on the screen fills the openings of the mesh uniformly with paste.

2012). 17 Schematic for stencil printing. prints (usually several thousand) before it has to be exchanged. , be combined with dual print for achieving narrow fingers. Disadvantages are higher costs for the stencil and the fact that not all geometric patterns can be printed in one step. , Hannebauer et al. (2013). 4 Dispensing Another alternative to standard Ag screen-printing for deposition of Ag on the wafer surface is dispensing (Hanoka, 1989; Hanoka and Danielson, 1991). , 2010). , 2014). , 2003), and as the technique is putting much less pressure on the wafer than screen-printing, it is especially well suited for thinner or more fragile wafers.

Download PDF sample

Rated 4.14 of 5 – based on 17 votes