A CMOS Self-Powered Front-End Architecture for Subcutaneous by Jordi Colomer-Farrarons, Pere MIRIBEL

By Jordi Colomer-Farrarons, Pere MIRIBEL

A CMOS Self-Powered Front-End structure for Subcutaneous Event-Detector units offers the notion and prototype attention of a Self-Powered structure for subcutaneous detector units. The structure is designed to paintings as a true/false (event detector) or threshold point alarm of a few ingredients, ions, etc... which are detected via a three-electrodes amperometric BioSensor procedure. The equipment is envisaged as a Low-Power subcutaneous implantable software powered through an inductive hyperlink, one emitter antenna on the exterior facet of the surface and the receiver antenna less than the outside. The sensor is managed with a Potentiostat circuit after which, a post-processing unit detects the specified degrees and prompts the transmission through a backscattering strategy through the inductive hyperlink. all of the instrumentation, other than the facility module, is carried out within the so known as BioChip. Following the belief of the powering hyperlink to reap power of the magnetic brought about hyperlink on the implanted machine, a Multi-Harvesting strength Chip (MHPC) has been additionally designed.

Show description

Read Online or Download A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach PDF

Similar microelectronics books

Werkstoffe fur die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften

Die vierte Auflage dieses bewährten Lehrbuches bietet eine moderne Einführung in die Grundlagen der Werkstoffwissenschaften. Das Buch stellt in zwei Teilen den Aufbau der Stoffe sowie die Werkstoffeigenschaften dar. Mechanische und thermische Werkstoffeigenschaften, elektrische Eigenschaften der Halbleiter, der Metalle und der Isolatoren sowie magnetische Werkstoffeigenschaften werden ausführlich behandelt.

Microelectronics Technology. Polymers for Advanced Imaging and Packaging

Content material: An research of approach concerns with chemically amplified confident resists / O. Nalamasu, A. G. Timko, Elsa Reichmanis, F. M. Houlihan, Anthony E. Novembre, R. Tarascon, N. Münzel, and S. G. Slater -- The annealing idea for environmental stabilization of chemical amplification resists / Hiroshi Ito, Greg Breyta, Donald C.

Networks-on-Chips: Theory and Practice

The implementation of networks-on-chip (NoC) expertise in VLSI integration offers numerous special demanding situations. to accommodate particular layout strategies and learn hurdles concerning intra-chip facts alternate, engineers are challenged to invoke a variety of disciplines and specializations whereas conserving a centred strategy.

Electronic circuit analysis and design

Half I Semiconductor units and simple functions 1 --
Chapter 1 Semiconductor fabrics and Diodes three --
1. 1 Semiconductor fabrics and homes four --
1. 1. 1 Intrinsic Semiconductors four --
1. 1. 2 Extrinsic Semiconductors 7 --
1. 1. three go with the flow and Diffusion Currents nine --
1. 1. four extra companies eleven --
1. 2 The pn Junction 12 --
1. 2. 1 The Equilibrium pn Junction 12 --
1. 2. 2 Reverse-Biased pn Junction 14 --
1. 2. three Forward-Biased pn Junction sixteen --
1. 2. four perfect Current-Voltage courting 17 --
1. 2. five pn Junction Diode 18 --
1. three Diode Circuits: DC research and versions 23 --
1. three. 1 generation and Graphical research recommendations 24 --
1. three. 2 Piecewise Linear version 27 --
1. three. three desktop Simulation and research 30 --
1. three. four precis of Diode types 31 --
1. four Diode Circuits: AC an identical Circuit 31 --
1. four. 1 Sinusoidal research 31 --
1. four. 2 Small-Signal identical Circuit 35 --
1. five different Diode varieties 35 --
1. five. 1 sun mobilephone 35 --
1. five. 2 Photodiode 36 --
1. five. three Light-Emitting Diode 36 --
1. five. four Schottky Barrier Diode 37 --
1. five. five Zener Diode 39 --
Chapter 2 Diode Circuits forty nine --
2. 1 Rectifier Circuits 50 --
2. 1. 1 Half-Wave Rectification 50 --
Problem-Solving method: Diode Circuits fifty one --
2. 1. 2 Full-Wave Rectification fifty three --
2. 1. three Filters, Ripple Voltage, and Diode present fifty six --
2. 1. four Voltage Doubler Circuit sixty three --
2. 2 Zener Diode Circuits sixty four --
2. 2. 1 perfect Voltage Reference Circuit sixty four --
2. 2. 2 Zener Resistance and percentage law sixty seven --
2. three Clipper and Clamper Circuits sixty eight --
2. three. 1 Clippers sixty eight --
2. three. 2 Clampers seventy two --
2. four Multiple-Diode Circuits seventy five --
2. four. 1 instance Diode Circuits seventy five --
Problem-Solving procedure: a number of Diode Circuits seventy nine --
2. four. 2 Diode good judgment Circuits eighty --
2. five Photodiode and LED Circuits eighty two --
2. five. 1 Photodiode Circuit eighty two --
2. five. 2 LED Circuit eighty three --
Chapter three The Bipolar Junction Transistor ninety seven --
3. 1 easy Bipolar Junction Transistor ninety seven --
3. 1. 1 Transistor constructions ninety eight --
3. 1. 2 npn Transistor: Forward-Active Mode Operation ninety nine --
3. 1. three pnp Transistor: Forward-Active Mode Operation 104 --
3. 1. four Circuit Symbols and Conventions one hundred and five --
3. 1. five Current-Voltage features 107 --
3. 1. 6 Nonideal Transistor Leakage Currents and Breakdown Voltage one hundred ten --
3. 2 DC research of Transistor Circuits 113 --
3. 2. 1 Common-Emitter Circuit 114 --
3. 2. 2 Load Line and Modes of Operation 117 --
Problem-Solving procedure: Bipolar DC research one hundred twenty --
3. 2. three universal Bipolar Circuits: DC research 121 --
3. three simple Transistor functions 131 --
3. three. 1 swap 131 --
3. three. 2 electronic common sense 133 --
3. three. three Amplifier 134 --
3. four Bipolar Transistor Biasing 138 --
3. four. 1 unmarried Base Resistor Biasing 138 --
3. four. 2 Voltage Divider Biasing and Bias balance a hundred and forty --
3. four. three built-in Circuit Biasing one hundred forty five --
3. five Multistage Circuits 147 --
Chapter four uncomplicated BJT Amplifiers 163 --
4. 1 Analog signs and Linear Amplifiers 163 --
4. 2 The Bipolar Linear Amplifier a hundred sixty five --
4. 2. 1 Graphical research and AC an identical Circuit 166 --
4. 2. 2 Small-Signal Hybrid-[pi] identical Circuit of the Bipolar Transistor one hundred seventy --
Problem-Solving procedure: Bipolar AC research a hundred seventy five --
4. 2. three Hybrid-[pi] an identical Circuit, together with the Early impact 176 --
4. 2. four multiplied Hybrid-[pi] identical Circuit one hundred eighty --
4. 2. five different Small-Signal Parameters and an identical Circuits a hundred and eighty --
4. three uncomplicated Transistor Amplifier Configurations 185 --
4. four Common-Emitter Amplifiers 189 --
4. four. 1 easy Common-Emitter Amplifier Circuit one hundred ninety --
4. four. 2 Circuit with Emitter Resistor 192 --
4. four. three Circuit with Emitter-Bypass Capacitor 196 --
4. four. four complicated Common-Emitter Amplifier ideas 199 --
4. five AC Load Line research two hundred --
4. five. 1 AC Load Line 2 hundred --
4. five. 2 greatest Symmetrical Swing 203 --
Problem-Solving approach: greatest Symmetrical Swing 204 --
4. 6 Common-Collector (Emitter-Follower) Amplifier 205 --
4. 6. 1 Small-Signal Voltage achieve 205 --
4. 6. 2 enter and Output Impedance 207 --
4. 6. three Small-Signal present achieve 209 --
4. 7 Common-Base Amplifier 214 --
4. 7. 1 Small-Signal Voltage and present profits 214 --
4. 7. 2 enter and Output Impedance 216 --
4. eight the 3 uncomplicated Amplifiers: precis and comparability 218 --
4. nine Multistage Amplifiers 219 --
4. nine. 1 Multistage research: Cascade Configuration 219 --
4. nine. 2 Cascode Configuration 223 --
4. 10 strength concerns 226 --
Chapter five The Field-Effect Transistor 243 --
5. 1 MOS Field-Effect Transistor 243 --
5. 1. 1 Two-Terminal MOS constitution 244 --
5. 1. 2 n-Channel Enhancement-Mode MOSFET 246 --
5. 1. three excellent MOSFET Current-Voltage features 248 --
5. 1. four Circuit Symbols and Conventions 253 --
5. 1. five extra MOSFET constructions and Circuit Symbols 253 --
5. 1. 6 precis of Transistor Operation 258 --
5. 1. 7 Nonideal Current-Voltage features 259 --
5. 2 MOSFET DC Circuit research 262 --
5. 2. 1 Common-Source Circuit 263 --
5. 2. 2 Load Line and Modes of Operation 267 --
Problem-Solving method: MOSFET DC research 268 --
5. 2. three universal MOSFET Configurations: DC research 269 --
5. 2. four Constant-Current resource Biasing 281 --
5. three easy MOSFET functions: change, electronic good judgment Gate, and Amplifier 283 --
5. three. 1 NMOS Inverter 283 --
5. three. 2 electronic common sense Gate 285 --
5. three. three MOSFET Small-Signal Amplifier 287 --
5. four Junction Field-Effect Transistor 287 --
5. four. 1 pn JFET and MESFET Operation 288 --
5. four. 2 Current-Voltage features 292 --
5. four. three universal JFET Configurations: DC research 295 --
Chapter 6 simple FET Amplifiers 313 --
6. 1 The MOSFET Amplifier 313 --
6. 1. 1 Graphical research, Load traces, and Small-Signal Parameters 314 --
6. 1. 2 Small-Signal similar Circuit 318 --
Problem-Solving approach: MOSFET AC research 320 --
6. 1. three Modeling the physique impression 322 --
6. 2 easy Transistor Amplifier Configurations 323 --
6. three The Common-Source Amplifier 324 --
6. three. 1 A uncomplicated Common-Source Configuration 324 --
6. three. 2 Common-Source Amplifier with resource Resistor 329 --
6. three. three Common-Source Circuit with resource skip Capacitor 331 --
6. four The Source-Follower Amplifier 334 --
6. four. 1 Small-Signal Voltage achieve 334 --
6. four. 2 enter and Output Impedance 339 --
6. five The Common-Gate Configuration 341 --
6. five. 1 Small-Signal Voltage and present earnings 341 --
6. five. 2 enter and Output Impedance 343 --
6. 6 the 3 simple Amplifier Configurations: precis and comparability 345 --
6. 7 Single-Stage built-in Circuit MOSFET Amplifiers 345 --
6. 7. 1 NMOS Amplifier with Enhancement Load 345 --
6. 7. 2 NMOS Amplifier with Depletion Load 350 --
6. 7. three NMOS Amplifier with PMOS Load 353 --
6. eight Multistage Amplifiers 355 --
6. eight. 1 DC research 356 --
6. eight. 2 Small-Signal research 360 --
6. nine simple JFET Amplifiers 362 --
6. nine. 1 Small-Signal similar Circuit 362 --
6. nine. 2 Small-Signal research 364 --
Chapter 7 Frequency reaction 383 --
7. 1 Amplifier Frequency reaction 384 --
7. 1. 1 similar Circuits 384 --
7. 1. 2 Frequency reaction research 385 --
7. 2 process move features 386 --
7. 2. 1 s-Domain research 386 --
7. 2. 2 First-Order services 388 --
7. 2. three Bode Plots 388 --
7. 2. four Short-Circuit and Open-Circuit Time Constants 394 --
7. three Frequency reaction: Transistor Amplifiers with Circuit Capacitors 398 --
7. three. 1 Coupling Capacitor results 398 --
Problem-Solving process: Bode Plot of achieve importance 404 --
7. three. 2 Load Capacitor results 405 --
7. three. three Coupling and cargo Capacitors 407 --
7. three. four skip Capacitor results 410 --
7. three. five mixed results: Coupling and skip Capacitors 414 --
7. four Frequency reaction: Bipolar Transistor 416 --
7. four. 1 multiplied Hybrid-[pi] identical Circuit 416 --
7. four. 2 Short-Circuit present achieve 418 --
7. four. three Cutoff Frequency 420 --
7. four. four Miller influence and Miller Capacitance 422 --
7. five Frequency reaction: The FET 426 --
7. five. 1 High-Frequency similar Circuit 426 --
7. five. 2 Unity-Gain Bandwidth 428 --
7. five. three Miller impression and Miller Capacitance 431 --
7. 6 High-Frequency reaction of Transistor Circuits 433 --
7. 6. 1 Common-Emitter and Common-Source Circuits 433 --
7. 6. 2 Common-Base, Common-Gate, and Cascode Circuits 436 --
7. 6. three Emitter- and Source-Follower Circuits 444 --
7. 6. four High-Frequency Amplifier layout 448 --
Chapter eight Output levels and gear Amplifiers 469 --
8. 1 strength Amplifiers 469 --
8. 2 energy Transistors 470 --
8. 2. 1 energy BJTs 470 --
8. 2. 2 strength MOSFETs 474 --
8. 2. three warmth Sinks 477 --
8. three sessions of Amplifiers 480 --
8. three. 1 Class-A Operation 481 --
8. three. 2 Class-B Operation 484 --
8. three. three Class-AB Operation 489 --
8. three. four Class-C Operation 493 --
8. four Class-A energy Amplifiers 494 --
8. four. 1 Inductively Coupled Amplifier 494 --
8. four. 2 Transformer-Coupled Common-Emitter Amplifier 495 --
8. four. three Transformer-Coupled Emitter-Follower Amplifier 497 --
8. five Class-AB Push-Pull Complementary Output phases 499 --
8. five. 1 Class-AB Output level with Diode Biasing 499 --
8. five. 2 Class-AB Biasing utilizing the V[subscript BE] Multiplier 501 --
8. five. three Class-AB Output degree with enter Buffer Transistors 504 --
8. five. four Class-AB Output degree using the Darlington Configuration 507 --
Part II Analog Electronics 519 --
Chapter nine the best Operational Amplifier 521 --
9. 1 The Operational Amplifier 521 --
9. 1. 1 perfect Parameters 522 --
9. 1. 2 improvement of the appropriate Parameters 523 --
9. 1. three research strategy 525 --
9. 1. four PSpice Modeling 526 --
9. 2 Inverting Amplifier 526 --
9. 2. 1 easy Amplifier 527 --
Problem-Solving approach: excellent Op-Amp Circuits 529 --
9. 2. 2 Amplifier with a T-Network 530 --
9. 2. three impact of Finite achieve 532 --
9. three Summing Amplifier 534 --
9. four Noninverting Amplifier 536 --
9. four. 1 simple Amplifier 536 --
9. four. 2 Voltage Follower 537

Extra info for A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach

Sample text

5 Outline of the Book 29 Fig. 5 Outline of the Book This book is divided in three main chapters. The first one, Chapter 2, develops the Multi Harvesting Power Chip (MHPC). On it, all circuits used to recollect energy from several ambient sources are theoretically and experimentally described and validated. Finally, the whole chip is tested working with all circuits collecting energy form more than one source at the same time. On the other hand, Chapter 3 is focused on the development of a BioChip with the integrated instrumentation to work with three electrodes amperometric Biosensors.

1 Multi Harvesting Power Chip (MHPC) MHPC consists on a simple Integrated Circuit (IC) able to harvest energy from different ambient sources and deliver this energy into usable electrical form [1, 2]. The proposed architecture is presented in Fig. 1. The system is able to collect energy from three different ambient sources: Solar (SC), Mechanical Vibration (PZT) and Thermoelectrical energy (HEAT). Furthermore, it is also possible to recollect energy from an Inductive power link (MI). All the energy obtained from these four sources is then transformed into electrical energy and stored in one or more storage devices (SD).

J. Patel, B. Kaminska, B. Gray, B. Gates,Electro-Enzymatic Glucose Sensor Using Hybrid Polymer Fabrication Process Electronics, Circuits and Systems, 2007. ICECS 2007. in Proceedings of the 14th IEEE International Conference on 11–14 Dec. (2007) pp. 403–406 76. X. Huang, S. Li, J. Schultz, Q. Wang, Q. Lin, A capacitively based MEMS affinity glucose sensor”, Proceedings of the International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS 2009, (21–25 June 2009), pp. 1457–1460 77.

Download PDF sample

Rated 4.04 of 5 – based on 42 votes